Deficiency of circadian protein CLOCK reduces lifespan and increases age-related cataract development in mice
نویسندگان
چکیده
Circadian clock is implicated in the regulation of aging. The transcription factor CLOCK, a core component of the circadian system, operates in complex with another circadian clock protein BMAL1. Recently it was demonstrated that BMAL1 deficiency results in premature aging in mice. Here we investigate the aging of mice deficient for CLOCK protein. Deficiency of the CLOCK protein significantly affects longevity: the average lifespan of Clock-/- mice is reduced by 15% compared with wild type mice, while maximum lifespan is reduced by more than 20%. CLOCK deficiency also results in the development of two age-specific pathologies in these mice, cataracts and dermatitis, at a much higher rate than in wild type mice. In contrast to BMAL1 deficient animals, Clock-/- mice do not develop a premature aging phenotype and do not develop the multiple age-associated pathologies characteristic of BMAL1 deficiency. Thus, although CLOCK and BMAL1 form a transcriptional complex, the physiological result of their deficiency is different. Our results suggest that CLOCK plays an important role in aging, specifically; CLOCK activity is critical for the regulation of normal physiology and aging of the lens and skin.
منابع مشابه
Antioxidant N-acetyl-L-cysteine ameliorates symptoms of premature aging associated with the deficiency of the circadian protein BMAL1
Deficiency of the circadian clock protein BMAL1 leads to premature aging and increased levels of reactivate oxygen species in several tissues of mice. In order to investigate the role of oxidative stress in accelerated aging and development of age-related pathologies, we continuously administered the antioxidant N-acetyl-L-cysteine toBmal1-deficient mice through their entire lifespan by supplem...
متن کاملArginase-II Deficiency Extends Lifespan in Mice
The mitochondrial arginase type II (Arg-II) has been shown to interact with ribosomal protein S6 kinase 1 (S6K1) and mitochondrial p66Shc and to promote cell senescence, apoptosis and inflammation under pathological conditions. However, the impact of Arg-II on organismal lifespan is not known. In this study, we demonstrate a significant lifespan extension in mice with Arg-II gene deficiency (Ar...
متن کاملDeviation of innate circadian period from 24 hours reduces longevity in mice
Deviation of innate circadian period from 24h reduces longevity in mice. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Summary The variation of individual lifespans, even in highly inbred cohorts of animals and under strictly controlled environmental conditions, is substantial and not well understood. This variation in par...
متن کاملLoss of circadian clock accelerates aging in neurodegeneration-prone mutants.
Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneratio...
متن کاملGlobal and hepatocyte-specific ablation of Bmal1 induces hyperlipidaemia and enhances atherosclerosis
Circadian rhythms controlled by clock genes affect plasma lipids. Here we show that global ablation of Bmal1 in Apoe-/- and Ldlr-/- mice and its liver-specific ablation in Apoe-/- (L-Bmal1-/-Apoe-/-) mice increases, whereas overexpression of BMAL1 in L-Bmal1-/-Apoe-/- and Apoe-/-mice decreases hyperlipidaemia and atherosclerosis. Bmal1 deficiency augments hepatic lipoprotein secretion and dimin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2010